Na	Name:	Class	Date:	
	Lab: Thermal E	xpans	ion of Lic	luids.
mo exp	Background Information: As thermal energy is a move faster and get farther apart so the object expa <i>expansion</i> . Also, when an object cools, its molecutogether and the object shrinks, or contracts.	ands. This is	called <i>thermal</i>	
Ot	Objectives: To observe a liquid's properties when To compare the properties of different liquid To organize and interpret data.		gy is added.	
н	Hypothesis:			
If	If thermal energy is added to a liquid then the liquid because			
\mathbf{M}	Materials: (List all materials use	d)		
In	In the space below draw a diagran	n of the	apparatus set	up.
	Procedure: 1. Set up apparetus as shown in the diagram. FOI		CAEETV DIII EC	
	 Set up apparatus as shown in the diagram. FOI Mark the level of each liquid on the glass tube. 			or 0cm.
	3. Place each test tube in a buret clamp so that all	three tubes of	can fit into your beal	ker.
	4. Place your beaker on the hot plate.5. Adjust the height of each test tube so that all are	e at the same	e height and just abo	ve the bottom of the
	beaker. Be sure the test tubes are not touching	the bottom of	of the beaker.	
	6. Add water to the beaker until it reaches the7. Record the starting temperature of the water. T			your liquids
	8. Turn on the hot plate to and begin record to a total of 15 minutes.			

9. Create a line graph of your data.10. Write your conclusion, answer all questions and attach your summary.

Data: Liquid Expansion

Data	Data: Liquid Expansion								
<u>Time</u>		Temperature		<u>Height (in cm.)</u>					
(in seconds)		<u>(in</u>	°C)	Liqu	<u> </u>	Liquid 2		Liquid 3	
30	480								
60	510								
90	540								
120	570								
150	600								
180	630								
210	660								
240	690								
270	720								
300	750								
330	780								
360	810								
390	840								
420	870								
450	900								

	onclusion: Be sure to explain if your hypothesis was supported or negated. Be su discuss your observations of the different liquids.
A	nalysis Questions:
1.	Indicate the independent variable for this experiment.
2.	Indicate the dependent variable for this experiment.
3.	Explain the relationship between temperature and a liquid's expansion.
4.	How can this lab help to explain the function of a thermometer?
5.	What was the most interesting part of this lab?
6.	What was the most challenging part of this lab?
7.	Identify at least three things that you learned from this lab.
8.	Identify at least three lab skills that you reinforced during this lab
9.	Challenge (attach with summary): Boiling point is a characteristic property of a liquid or an element.

Summary: Attach a three paragraph summary of this lab. (1. What you were doing and why; 2. What you found out from your data; 3. How what you learned relates to your life.)

an element help us determine the expansion rate of a liquid?

Explain how the boiling point relates to the rate at which a liquid expands. How can the boiling point of